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The integration of engineering process control (EPC) and statistical process
control (SPC) has drawn wide attention because of its capability to minimize
long-term process variation and improve product quality. However, dynamic shift
patterns are usually observed when feedback-control loops exist, which
consequently lead to poor charting performance. In this paper, the dynamic
patterns in mean shifts of proportional integral (PI) controlled and minimum
mean square error (MMSE) controlled processes are formulated and analysed.
In conjunction with a model-free forecasting algorithm, an adaptive T2 charting
procedure is applied to improve detection power. This adaptive procedure is
constructed upon the uniformly most powerful (UMP) unbiased test with the
consideration of time-varying patterns. Monte Carlo simulations have shown that
the proposed strategy possesses significantly improved detection sensitivity over
intended shift ranges.

Keywords: Adaptive chart; Automatic process control; Exponentially weighted
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1. Introduction

The necessity to apply statistical process control (SPC) to feedback-controlled
processes has been widely recognized (Tucker et al. 1993, Capilla et al. 1999,
Tsung 2000, Gultekin et al. 2002). Typically, SPC techniques are used to monitor
process running status and give early alarms when assignable causes are identified,
while engineering process control (EPC) is a strategy to keep a process at its
designated level and make adjustment to controllable factors if any deviations are
observed. Recently, substantial efforts have been devoted to the integration of these
two techniques (Tsung et al. 1999, Tsung and Shi 1999) because of the evidence that
although stationary disturbance of a process can be compensated by certain feedback
control laws, SPC is still essential for long-term process stability assurance and
assignable cause discovery.

In the integrated SPC/EPC framework, two adverse impacts on SPC are
introduced by the feedback control laws of EPC: one is the ‘‘window of
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opportunity,’’ and the other is the dynamic shift. ‘‘Windows of opportunity’’ refers
to the short interval immediately after the occurrence of a process fault within which
a signal can be detected. Once the opportunity is missed, the process shows little or
no hint about the process abnormality, and it becomes difficult for a SPC chart to
perceive this failure (Apley and Shi 1999, Tsung and Apley 2002). The root cause of
this phenomenon is the compensatory action generated by the feedback controller
when a process fault occurs. Consequently, monitoring the process output using
conventional SPC charts cannot gain effective performance. Alternatively, some
authors have suggested to monitoring the control action (Faltin and Tucker 1991,
Box and Kramer 1992, Capilla et al. 1999), which is believed to carry more
sustainable and useful information about the failure. Tsung and Tsui (2003)
compared the performance of monitoring the output and the input streams in
minimum mean squared error (MMSE) controlled processes and concluded that the
performance of different charts depends heavily on the parameters of the process
being monitored. No uniformly powerful chart is found. Recent research by Tsung
et al. (1999) has shown that the joint monitoring of both the output and the input
streams using a bivariate chart outperforms many conventional SPC approaches on
a single variable. This method was further extended by Tsung and Apley (2002),
in which lagged historical observations were taken into account for monitoring and
the resulting chart was shown to be sensitive to both mean shifts and process
parameter changes.

Nevertheless, the window of opportunity issue is only part of the challenges
caused by the feedback controller. Due to the continuous adjustment action,
a typical level shift, which otherwise would have stayed at a constant value, would
keep changing over time. A dynamic shift pattern is therefore observed. As most
conventional SPC schemes are designed for detecting constant level shifts,
their performance has been seriously deteriorated by the dynamic pattern.

Clearly, the study of the dynamic shift patterns is essential to efficient chart
design. Hu and Roan (1996) presented the dynamic shift patterns of time-
series-based control charts, and Tsung and Tsui (2003) reported that similar
patterns are observed in processes with MMSE controllers. In an attempt to monitor
a feedback-controlled process, Jiang (2004) also noticed that the shift patterns of
both MMSE-controlled and proportional integral- (PI) controlled processes are
time-varying, and suggested that any efficient charting schemes should take dynamic
shift information into consideration. However, the strategy to take advantage of
dynamic shift information to improve monitoring sensitivity has not been widely
studied. The T2 chart proposed by Tsung et al. (1999) failed to consider pattern
information, and the solution in Jiang (2004) took only part of the dynamics in
chart design. These two methods will be reviewed in more detail in section 2.
The generalized likelihood ratio test (GLRT) approach in Apley and Shi (1999) aims
to consider the whole pattern by performing searches repeatedly in a window.
However, this method requires the dynamic pattern being known exactly in the
design phase, which may be difficult in practice. In addition, the GLRT procedure is
developed for univariate process monitoring only.

The purpose of this paper is to address the issue of monitoring feedback-
controlled processes with time-varying shifts in a multivariate environment. A newly
emerged SPC scheme, namely the adaptive T2 procedure by Wang and Tsung (2007),
is investigated in this paper. The adaptive T2 procedure is established upon the
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uniformly most powerful (UMP) unbiased test, which utilizes an exponentially
weighted moving average (EWMA)-based forecasting algorithm and possesses the
highest detection power among all Shewhart-type T2-based charts.

The rest of this paper is organized as follows. A review of conventional
monitoring methods is presented in section 2. The time-varying shift patterns of
feedback-controlled processes are analysed in section 3. In section 4, the adaptive T2

procedure is presented. A new EWMA-based shift forecasting algorithm for
oscillated processes is proposed. The performance adaptive T2 when monitoring
feedback – controlled processes is evaluated in section 5. The last section, section 6,
concludes this paper with a summary of major findings and recommendations.

2. Review of SPC schemes for feedback-controlled processes

We start by considering a Run-to-Run (R2R) process with a single input and a single
output. Without loss of generality, assume the target value of the process is zero.
Let et be the measured deviation from the target, and xt�1 be the setting of the
controllable factor at step t� 1, which is usually generated by a feedback controller.
In practice, et is the additive effect of two parts: output yt that is dictated by the
control action, and process disturbance dt that is independent of the control action.
We consider a simple dynamic model with yt¼xt�1, where the output at step t, yt,
only depends on the input at step t� 1. The measured output, et, can be modeled
by the following equation:

et ¼ yt þ dt ¼ xt�1 þ dt, ð1Þ

All variables in the model are subscripted by time stamps to indicate the sequential
intervals at which the data are collected.

This model is rather physically representative and has been widely cited to
illustrate chemical-mechanical polishing (CMP) processes, etching processes and
epitaxial growth processes in semiconductor manufacturing and other discrete
processes in related industries (see Sachs et al. 1995, DelCastillo and Hurwitz 1997,
Fan et al. 2002, Jen et al. 2004, and the references therein).

There is a substantial discussion in the literature on choosing the disturbance
model, dt, for a dynamic process. Zhang and Pollard (1994) declared that in
industries, it is common for the input stream to be described by a first-order
autoregressive (AR) model. Nembhard and Kao (2003) and Hwarng (2004) also
adopted AR(1) models in describing process disturbances. Montgomery et al. (2000)
used a first-order integrated moving average (IMA) model to illustrate the input
stream of a tank process. Tsung et al. (1998) assumed that process disturbance
follows either a first order autoregressive moving average (ARMA) or autoregressive
integral moving average (ARIMA) model. When the stochastic behaviour of process
input, dt, follows an ARMA(1,1) model, it can be written as:

dt ¼ �dt�1 þ "t � �"t�1, ð2Þ

where "t is an i.i.d. white nose series, "t � Nð0, �2" Þ. When �! 0 or �! 1, the
ARMA(1,1) process reduces to an AR(1) or an IMA(1,1) process, respectively.
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A white noise series is obtained when � ¼ �. Therefore, the ARMA(1,1) model is a

useful and representative model for describing process disturbance. The rest of the

derivations in this paper will be carried out based on the ARMA(1,1) model.
In order to maintain the process output on target, it is a common practice to set

up engineering process controllers to regulate the system. Among others, two most

popular industrial control schemes are PI controllers (Tsung et al. 1998) and MMSE

controllers (Box et al. 1994). The general form of a PI controller is given by:

xt ¼ kPet þ kI
Xt
k¼0

ek ¼ kPet þ kI
1

1� B
et, ð3Þ

where B is a backshift operator such that Bxt¼ xt�1. The proportional part of the PI

controller is sensitive to sudden large shifts in the output, while the integral part is

capable of compensating and eliminating sustained shifts in quality characteristics

and brings the process back to its target after a transient period. The selection of the

parameters, kP and kI, is critical to the effectiveness of the PI controller. Tsung et al.

(1998) introduced an optimal design procedure to minimize process variations. In

this paper, their design guideline is followed to generate the optimal PI controllers

for all processes under investigation.
The MMSE controller is another type of automatic process control procedure,

which aims to compensate predicted output deviations, and leave only unpredictable

residuals in the regulated process (Pandit and Wu 1993). Given the parameter

settings of the ARMA(1,1) disturbance model in (2), the MMSE controller takes

the form:

xt ¼ �xt�1 þ ð� � �Þet: ð4Þ

Substituting (4) for the control action in (1) yields et ¼ "t, which suggests that the

controlled output of the process is merely a white noise series. The mean square error

of output sequence is therefore minimized. Interested parties are referred to Tsung

et al. (1998) for a comparison of the PI and the MMSE controllers.
Let Vt ¼ ½et, xt�

T be the vector of the output and the input of the latest

observation, and without loss of generality, assume the mean of Vt, k, is zero. Tsung
et al. (1999) defined the dynamic T2 chart as:

T2 ¼ VT
t D
�1Vt > h1, ð5Þ

where ' is the variance-covariance matrix of vector Vt, h1 is a control limit that

achieves a desired in-control average run length (ARL). The computation procedure

of ' of a process under the PI controller can be found in Tsung and Shi (1999).

In this paper, we have outlined the computation for ' of MMSE-control processes,

which is shown in the appendix.
The T2 chart (5) is a directionally invariant chart since it has equal sensitivity for

shifts with the same magnitudes and is not influenced by shift directions (Lowry and

Montgomery 1995). However, the dynamic shift feature of a feedback-controlled

process, which is believed to convey informative signals about process failures, is not

considered by this scheme.
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Hawkins (1991) indicated that in the monitoring of multivariate processes,
if prior information regarding the future mean shift direction is known to be d, the
most powerful chart in detection shifts along this direction is given by:

T2 ¼ dTD�1Vt > h2, ð6Þ

The statistic in (6) is the UMP test among all unbiased tests for the statistical
hypothesis: H0 : k ¼ 0 versus H1 : k ¼ �d, where � is a scalar.

In contrast to (5), control chart (6) is a directionally variant chart, since its
detection power is dictated by both the magnitude and the direction of the shift.
Shifts occurring along direction d will be detected by chart (6) much quicker than
chart (5). If unexpectedly, shifts occur in other directions, this chart may be inferior
to other charts, including (5).

Two special forms of chart (6) are found in Jiang (2004). Instead of monitoring
the vector, Vt, Jiang (2004) monitored the vector of the standardized output and the
one-step lagged input, Zt ¼ ½et=�e, xt�1=�x�

T, where �e and �x are the standard
deviations of et and xt, respectively. As the shift of Zt keeps changing over time,
Jiang (2004) identified two snapshots of the shift direction, which are believed to be
important to fault detection. The first one, denoted by d0, is the direction of Zt

immediately after the occurrence of a shift, and the second one, denoted by d1, is
obtained when the process enters its steady state. Consequently, two statistics can be
generated based on (6):

U0 ¼ d0D
�1
z Zt, ð7Þ

and

U1 ¼ d1D
�1
z Zt, ð8Þ

where 'z is the covariance matrix of Zt.
The U0 chart and the U1 chart in Jiang (2004) are obtained after simple

manipulation on equations (7) and (8), respectively. Because of the specific directions
the charts are designed for, the U0 chart is sensitive to large shifts, while the U1 chart
is sensitive to small shifts.

However, it is not difficult to understand that since the real process shift changes
continuously over time, both the U0 chart and the U1 chart are less optimal in the
sense that the real shift direction is different from any of the designated ones. In
addition, any single vector is not sufficient to represent a time-varying shift pattern.
Therefore, we will study the dynamic shift patterns of feedback-controlled processes
in the following section, and propose a forecasting method to improve the charting
performance.

3. Time-varying shift patterns in feedback-controlled processes

The special responses generated by certain types of assignable causes, which are
called the signatures of the corresponding failures, are essential to quick fault
identification. The original purpose of applying an automatic controller is to
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maintain the process output at a designated level. Any deviation from the target

should trigger an action of the controller to drag the output back to the target by

adjusting controllable factors. The side effect of the controller, however, is its impact

on the fault signatures. Although the process shift is constant, the observed signature

may show complex patterns. As a result, the fast detection of faults becomes more

difficult. In this section, we will study how the usual process fault has been changed

due to the PI or the MMSE controller, and provide guidelines for subsequent

chart design.
One of the frequently encountered process failures is a mean shift, which may

be caused by various reasons, such as a sudden change in raw material, the break of

a machinery component, and the malfunctioning of a sensor. Suppose that a

sustained mean shift of magnitude � is introduced into process (1) starting from t¼ 0.

The observed process output is the sum of the normal output and the shift, which

takes the form:

et ¼ �t þ xt�1 þ dt, ð9Þ

where

�t ¼
0 t < 0

��d t � 0:

�
ð10Þ

The quantity �d is the standard deviation of dt in (2) and

�2d ¼ ð1� 2�� þ �2=1� �2Þ�2" . In the following, the behaviour of the shifted process

is studied with the presence of either PI or MMSE controller.

3.1 Dynamic shift zones of PI-controlled processes

We first apply PI controller (3) to shifted process (9). Substituting the controller

for the control action, xt�1, in process (9), and taking expectations on both sides

of the equation yields:

E ½et� ¼ ð�þ 1þ kP þ kIÞE ½et�1� � ðkP þ �þ �kP þ �kIÞE ½et�2�

þ �kPE ½et�3� þ �t � ð�þ 1Þ�t�1 þ ��t�2: ð11Þ

In particular, the transient and steady state behaviour of et satisfy:

E ½e0� ¼ ��d

E ½e1� ¼ ð1þ kP þ kIÞ��d

lim
t!1

E ½et� ! 0:

8><
>: ð12Þ

By substituting the PI controller for et in (9), the following mean shift pattern of xt
is obtained:

E ½xt� ¼ ð�þ 1þ kP þ kIÞE ½xt�1� � ð�þ �kP þ kP þ �kIÞE ½xt�2�

þ �kPE ½xt�3� þ ðkP þ kIÞ�t � ð�kP þ �kI þ kPÞ�t�1 þ �kP�t�2, ð13Þ
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and the following equations regarding the transient and steady states of xt hold:

E ½x0� ¼ ðkP þ kIÞ��d

E ½x1� ¼ ðk
2
P þ k2I þ kP þ 2kIÞ��d

lim
t!1

E ½xt� ! ���d:

8><
>: ð14Þ

Equations (11) and (13) suggest that in the event of a sustained shift, both et and
xt exhibit certain types of dynamic patterns. In specific, et increases to � immediately
after the occurrence of the shift, while the signal reaches xt one step later. When time
goes to infinity, the information carried by et vanishes as et approaches zero, while
the signal in xt becomes more noticeable. Equation (12) also suggests that the PI
controller is capable of eliminating sustained shifts by adjusting control factors.

In this section, processes with different parameter combination will be studied.
Each process is equipped with a PI controller with parameters suggested by Tsung
et al. (1998). Since with a PI controller, the steady state of et always approaches zero,
processes can only be differentiated by their transient stage behaviour. In figure 1,
the whole parameter space of the process is classified into four zones. In zone 1, as
shown in figure 2(a), strong oscillations are observed. The mean of the process
output varies alternatively from positive to negative, then back to positive again,
until it enters its steady state. In figure 2(b), an example from zone 2 is illustrated.
The oscillations in this area are much weaker, and last a very short period of time
before the process becomes stable. Processes in zone 4 fall smoothly from a sudden
shift, and approach their steady states gradually. A smoothed falling trend is clearly
observed in figure 2(d). Zone 3 is analogous to the fourth zone, except for a weak
spike in the falling stage. The trend is less smooth compared with the previous zone,
as shown in figure 2(c).

The lower-right area of figure 1 is not labeled since the PI controller reduces to a
pure P controller in this area. Consequently, xt becomes proportional to et, the
dynamic pattern will be much simplified and the conventional endeavors of process
monitoring should be sufficient. In addition, a pure P controller is rarely used
independently because of the existence of model estimation uncertainty. Therefore,
we will consider the cases in which both the proportional term and the integral term
of the PI controller are functioning in this paper.

3.2 Dynamic shift zones of MMSE-controlled processes

Showing time-varying shifts is not a unique feature of the PI controller. If instead,
the process is adjusted by the MMSE controller, (4), the output of process (9) will
take the form:

et ¼ �t
1� �B

1� �B
þ "t: ð15Þ

The deterministic part of (15) follows an ARMA(1,1) model with parameter
(�, �). Since "t is a white noise series, the mean of the process output is:

E ½et� ¼ �t 1þ ð� � �Þ
X1
k¼0

�kBkþ1

 !
: ð16Þ
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Zone 1: f = 0.8, q = −0.7,
kP = −0.125; kI = −1.448

(b) Zone 2: f = 0.8, q = −0.25,
kP = −0.125; kI = −0.993

(c) Zone 3: f = 0.7, q = −0.1,
kP = −0.214; kI = −0.645

(d) Zone 4: f = 0.8, q = 0.3,
kP = −0.125; kI = −0.427
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Figure 2. Dynamic shift patterns of PI-controlled processes in different zones.
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Note that �tB
k
¼ 0 for k� 1, the output, et, follows

E ½e0� ¼ ��d

E ½e1� ¼ ð1þ � � �Þ��d

lim
t!1

E ½et� ! ��dð1� �Þ=ð1� �Þ:

8><
>: ð17Þ

By the same token, the mean of the control action is obtained:

E ½xt� ¼ �tð� � �Þ
X1
k¼0

�kBk: ð18Þ

In particular, the transient and steady states of xt are shown to be:

E ½x0� ¼ ð� � �Þ��d

E ½x1� ¼ ð� � �Þð1þ �Þ��d

lim
t!1

E ½xt� ! ��dð� � �Þ=ð1� �Þ:

8><
>: ð19Þ

The analysis clearly characterizes the time-varying shifts of the process under the

MMSE controller. Compared to the PI-controlled output in (12), one significant

difference is found in (17). The limiting output does not equal zero, which means the

MMSE controller fails to compensate a sustained level shift in the process mean.
Likewise, the parameter space of processes under MMSE controllers can be

further classified. Based on the value of the first transient response and the value of

the steady state response, the stability region of process (1) is divided into three zones

in Hu and Roan (1996) and Tsung and Tsui (2003). In particular, within the stability

region j�j < 1, j�j < 1, the zones are defined by the following model:

zone 1 : �5�� 1

zone 2 : �4� and �4�� 1

zone 3 : �4�:

8><
>: ð20Þ

An example from each zone is shown in figure 3. In zone 1, strong oscillations are

observed from both et and xt. In zone 2, the process decays gradually until it reaches

its steady state; while in zone 3, both et and xt increase smoothly toward their

respective steady state levels.
Henceforth, we use PI-zone i to denote the ith zone in figure 1, and MMSE-zone i

to represent the ith zone given by equation (20). Examples will be taken from

different zones for further investigation.
It is worth noting that taking expectations on both sides of equation (9) for t� 0

and making a simple transformation yields:

E ½et� � E ½xt�1� ¼ �, ð21Þ

which shows that the shift magnitudes of the output and the one-time lagged input

are in parallel to each other with a constant distance, �. When the signal in the output

stream becomes weaker, the signal in the input side will be stronger, and vice versa.

This equation holds independent of any particular algorithms. It partially supports

the finding that the joint monitoring of et and xt is favoured over the monitoring of
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any individual variable, since the overall signals are not lost if both variables are
being monitored.

4. An adaptive T2
chart for monitoring feedback-controlled processes

The previous section has revealed that the dynamic shift patterns of feedback-
controlled processes carry rich information about process faults, and hence, are
critical to SPC. The major pitfall of chart (5) is its ignorance of dynamic shift
patterns. Charts (7) and (8), although in which two static snapshots are considered,
fail to take advantage of the whole pattern of information.

Wang and Tsung (2007) proposed an adaptive T2 chart for monitoring dynamic
shifts. In this section, we firstly introduce this adaptive T2 chart and then applied it to
monitor feedback-controlled processes. Based on the specific pattern information
derived in section 3, a new forecasting algorithm is proposed to enhance forecasting
accuracy and improve charting performance.

Instead of forcing a constant shift direction in (6), we treat the shift direction as
dynamic and allow it to change over time. Assume at time t, the shift direction is
known to be kt. The adaptive T2 chart is given by:

T2 ¼ kTt D
�1Vt �

1

2
kTt D

�1kt > h3: ð22Þ

This charting statistic is the UMP unbiased test for detecting the existence of
shifts in the particular direction, kt. The adaptive procedure is analogous to the

(a) Zone 1: f = 0.5, q = −0.9 (b) Zone 2: f = 0.7, q = 0.2 

(c) Zone 3: f = 0.2, q = 0.6
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Figure 3. Dynamic shift patterns of MMSE-controlled processes in different zones.
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directionally variant T2 chart (6), except that the shift direction vector is subscripted
by time t, and is updated continuously in each step. In addition, an additional
component derived from the log-likelihood ratio related to the hypothesis
E ½Vt� ¼ 0 vs E ½Vt� ¼ kt is maintained since kt is now not a constant. More
properties of the adaptive T2 chart are given in Wang (2006).

One main challenge in implementing the adaptive T2 chart is the determination
of kt. The performance of the chart is believed to be heavily dependent on the
accuracy in estimating this statistic. Although theoretical shift patterns of PI- or
MMSE-controlled processes have been given in (11) and (13), or (16) and (18), the
occurrence time of a process failure, which is also called the change-point of a
process, is rarely known. Therefore, forecasting algorithms will be employed to
obtain an estimation of kt.

In general, a forecasting algorithm is either model based or model free. A model-
based algorithm involves fitting an ARMA(p, q) model to the dataset for each stream
first, then the one-step-ahead estimation of the model is used as the true value
(Pandit and Wu 1993, Apley and Tsung 2002). However, the performance of a
model-based method depends heavily on the accuracy of the time-series modeling.
Poor estimation of model parameters will lead to poor forecasting accuracy.
A model-free method does not require an explicit fitting of any specific models.
As suggested by Alwan and Roberts (1989), the EWMA statistic is, in many cases,
a good approximation of time-series models. Nembhard and Kao (2003) successfully
utilized an EWMA-base method in intensity forecasting in a plastic product
manufacturing station. In addition, the EWMA forecasting procedure has a simple
form and good interpretability. Therefore, the EWMA procedure will be utilized
in this paper for dynamic shift forecasting.

Let �e,t be the estimated dynamic shift sequence for the process output. It can be
obtained by an EWMA recursive procedure:

�e, t ¼ �et þ ð1� �Þ�e, t�1, ð23Þ

where � is a smoothing parameter that satisfies 0� �� 1. The larger the � is, the
faster the trend is followed. However, if the raw data contain large variations,
a smaller value of � will provide a more robust forecasting against noise signals.

The shift of xt, �x,t can be obtained by the same token. Furthermore, let
Vt ¼ ½et, xt�

T be a vector of the latest observations, and kt ¼ �e,t,�x, t

� �T
be the

simultaneous forecasting of the input and the output shift directions. The recursive
updating equation of kt is obtained by plugging in the forecasting of each variable:

kt ¼ �Vt þ ð1� �Þkt�1, ð24Þ

where � is the common smoothing parameter. The above modeling procedure is
analogous to the multivariate EWMA procedure for monitoring multivariate
applications (see Lowry and Montgomery 1995 and the references therein).
The limiting form of the variance of kt is given by:

D� ¼
�

2� �
D, ð25Þ

where ' is the covariance matrix of Vt.
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Figure 4 shows two examples when the process has a unit mean shift starting
from t¼ 0; et and xt are forecasted by an EWMA procedure. The example selected
from PI-zone 1 exhibits strong oscillations. Conversely, the process from MMSE-
zone 3 shows smoothed increasing trend in approaching its steady state.

As the weights of the EWMA predictor fall off exponentially, the effect of
applying EWMA to a stationary series is equivalent to smoothing out jagged noise
while keeping the trend visible. However, oscillations in the processes from PI-zone 1
and MMSE-zone 1 are part of the fault signatures. Eliminating the oscillations will
cause the information to be lost. As is shown in figure 4(a), the forecasted output
stays close to zero in the transient stage of the mean shift. No doubt, the loss of
transient information will decrease the possibility of detecting a fault in the earliest
stage.

A careful study of the oscillated processes in figures 2 and 3 reveals that each
process oscillates around its respective mean, and the cycle time of the oscillations is 1.

(a) PI-zone 1: f = 0.8, q = −0.7, kP = −0.125; kI = −1.448, l=0.3

(b) MMSE-zone 3: f = 0.2, q = 0.6, l = 0.3
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Figure 4. Forecasting of feedback-controlled processes using EWMA and OEWMA.
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That is, the process will go beyond and beneath the process mean alternatively, and
approach the steady state level in the end. Therefore, we propose to extend the
traditional EWMA procedure to an Oscillated EWMA (OEWMA) to gain a more
accurate forecasting when oscillations exhibit.

The OEWMA model is shown in equation (26). In this model, the process mean,
mt, is first predicted with an ordinary EWMA procedure. Next, the forecasting error,
�t, which is believed to be an oscillated process, is calculated. The residual process
has a mean of zero, and changes its sign alternatively. We will therefore develop
another EWMA equation, which is shown on the third line in (26) and is the key to
the OEWMA, to obtain a forecasting of the oscillated residual process, pt. Finally,
the predicted mean, mt, and the residual, pt, are summed up to generate the one-
step-ahead forecasting of the original process.

mt ¼ ð1� �Þmt�1 þ �et

�t ¼ et �mt

pt ¼ �ð1� �Þpt�1 þ ��t

�t ¼ mt þ pt:

8>>><
>>>:

ð26Þ

The equation for forecasting the residual part, pt, resembles the regular EWMA
except for a minor modification in the sign of the weights. Expanding the equation
yields:

pt ¼ ��t � �ð1� �Þ�t�1 þ �ð1� �Þ
2�t�2 � � � � þ ð�1Þ

k�ð1� �Þk�t�k þ � � � : ð27Þ

Compared to the regular EWMA procedure, the signs of the weights in (27)
change alternatively. However, the decaying speeds of EWMA and OEWMA are
equal if the same � is used by both.

The forecasted sequences by OEWMA are also shown in figure 4. As is seen from
figure 4(a), the waved trend of the oscillated process is successfully captured. For the
slow-increasing process in figure 4(b), OEWMA performs closely to the ordinary
EWMA. This suggests that although OEWMA is designed for oscillated processes,
it exhibits a robust performance in forecasting a smoothly changing process.

It is also interesting to consider two extreme cases of the adaptive T2 chart. If the
smoothing parameter is chosen as �¼ 1, then the forecasting sequence is identical to
the observation sequence, kt ¼ Vt. The adaptive T2 procedure (22) reduces to
T2 ¼ VT

t D
�1Vt, which is the conventional T2 chart without considering dynamic shift

patterns. If, instead, �¼ 0, it results in kt ¼ k0. The predicted shift direction is kept
constant as the initial value. The adaptive procedure reduces to T2 ¼ kT0D

�1Vt after
removing a constant term, which is a directional variant T2 chart designed for a
single specific direction, k0. In general, the adaptive chart takes value 05�51, and it
is expected to capture the shift trend, and enhance its detection performance.

The ARL of the adaptive T2 chart is influenced by control limit h3 in (22), which
is a design parameter that helps to define a balanced tradeoff between the false alarm
rate and the run length. The usual integral equation and Markov chain methods (see
Lu and Reynolds 1999 and the references therein) for evaluating the properties of
control charts can be extended to the adaptive T2 chart. When the process is in
control, the predicted direction vector, kt, follows a multivariate normal distribution
with mean zero and variance given in (25). Therefore, the scaled T2 statistic, (22),
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follows a chi-square distribution with two degrees of freedom. The transition
probability matrix can then be obtained based on the normal distribution of kt and
the chi-square distribution of the T2 statistic. However, the study of this method
deserves further research efforts. In this paper, we will compute the ARL using
Monte Carlo simulations. The determination of control limit h3 for a given in-control
ARL can be calculated using a numerical method. A software program is provided to
facilitate the calculation, which can be downloaded from http://qlab.ielm.ust.hk/.

5. Simulation study

In order to investigate the performance of the adaptive T2 chart in monitoring
feedback-controlled processes, we will compare it with existing schemes. The chosen
competitors include the U0 and the U1 charts from Jiang (2004), and the T2 chart
from Tsung et al. (1999). In addition, multivariate EWMA (MEWMA) charts have
been shown to possess better power than Shewhart-type T2 charts in detecting small
process shifts (see Lowry and Montgomery 1995, Molnau et al. 2001, etc.); we will
also compare the adaptive T2 scheme with the MEWMA chart.

The adaptive T2 chart is used in conjunction with two forecasting algorithms. The
first one is the regular EWMA procedure. We denote the corresponding chart an
AT2-E chart henceforth. The second one is the OEWMA procedure, and we name
the chart the AT2-OE chart hereafter.

Table 1 shows the charting performance of a process under PI control. The
process is taken from PI-zone 1 with � ¼ 0:8, � ¼ �0:7 and the controller has
kP ¼ �0:125, and kI ¼ �1:448. As is shown in figure 2(a), this process shows strong
oscillations in its transient stage. Two different values, �¼ 0.2 and �¼ 0.5, are
adopted by the AT2-E and the AT2-OE charts, respectively. For the multivariate
EWMA chart, the same two smoothing parameter values are applied. The shift
magnitude, as shown in the first column of the table, ranges from zero to 3.0 to cover
both small and large shifts. The in-control ARL of each chart is forced to be 200 for
fair comparison. Each ARL value is obtained using at least 10 000 replicates in all the
cases.

First, we give a general review on the competing schemes. As is seen in table 1, the
T2 chart, as expected, is sensitive to large shifts, while it is not as capable as the U1
and MEWMA chart in detecting small shifts. However, the large shift performance
of U1 and MEWMA charts are rather poor, especially when a small � value is used
by the MEWMA chart. The U0 is sensitive to large process shifts, but it is inferior to
the U1 chart in detecting small shifts.

When comparing the adaptive T2 charts with other competing charts for small
shifts, it is learned that the adaptive charts with �¼ 0.2 are superior to the T2 chart
and the U0 chart for small shifts. Although the MEWMA and U1 charts perform
close to or better than the AT2 charts for small shifts, their large shift performance
is seriously deteriorated. A close examination of the MEWMA chart with �¼ 0.5
and the two adaptive T2 charts with �¼ 0.2 reveals that we should favour the latter
charts even more strongly than the former one. The AT2-E and AT2-OE charts
outperform the MEWMA chart over the whole range. This shows that a fine-tuned
adaptive chart is more effective in detecting large scope of process shifts than the
MEWMA chart.
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The large shift performance of the adaptive T2 procedures is slightly inferior to
the T2 chart. This is a consequence of the EWMA or OEWMA smoothing
procedure, which slows down the tracking of large process shifts. In the event of a
large mean shift, the forecasting needs several steps to catch up due to the averaging
effect of historical observations. This situation is partially alleviated by increasing
the smoothing parameter and putting more weight on recent observations. As is seen
from the table, the large shift performance of both the AT2-E chart and the AT2-OE
chart is improved when � increases from 0.2 to 0.5. If � takes an extreme value 1.0,
the AT2-E chart will be equivalent to the T2 chart. However, putting more emphases
on the most recent observations will make the forecasting easier to be contaminated
by noises and hence deteriorates the small shift performance. The trade-off between
large and small shift performance depends on the requirement from a real situation.
Practitioners can adjust the smoothing parameter flexibly to achieve higher
sensitivity in a designated range.

Between the AT2-E chart and the AT2-OE chart, when the same smoothing
parameter is used, the AT2-E chart is slightly superior to the AT2-OE chart for small
shifts, while it is inferior to AT2-OE for large shifts. We run simulations to
investigate the distribution of each ARL value of the two charts. The results are
illustrated in table 2. Both the AT2-E and the AT2-OE charts use �¼ 0.2. Let P(n) be
the probability that the ARL is less than or equal to n. Obviously, the AT2-OE has a
higher probability to detect shifts with shorter runs. This is explained by the effect of
the modified weighting scheme. The oscillation is more easily captured by the
OEWMA forecasting algorithm.

Table 1. Performance comparison of control charts for a process from PI-Zone 1.
� ¼ 0:8, � ¼ �0:7, kP¼�0.125; kI¼�1.448.

AT2-E AT2-OE MEWMA

� �¼ 0.2 �¼ 0.5 �¼ 0.2 �¼ 0.5 T2 U0 U1 �¼ 0.2 �¼ 0.5

0.5 113.51 128.39 117.69 135.66 139.36 118.19 73.00 106.46 118.86
1.0 42.39 44.20 36.09 45.24 47.82 37.16 31.35 43.14 48.52
1.5 10.82 6.81 5.06 5.67 6.00 4.05 14.90 20.56 17.15
2.0 1.91 1.17 1.10 1.07 1.07 1.04 7.04 11.32 3.71
2.5 1.01 1.00 1.00 1.00 1.00 1.00 3.35 6.87 1.12
3.0 1.00 1.00 1.00 1.00 1.00 1.00 1.73 3.77 1.00

Table 2. ARL distributions of the AT2-E and the AT2-OE chart. �¼ 0.2.

AT2-E AT2-OE

� ARL P(3) P(5) P(10) P(20) ARL P(3) P(5) P(10) P(20)

0.5 113.51 0.0059 0.0152 0.0561 0.1428 117.69 0.0275 0.0440 0.0873 0.1580
1.0 42.39 0.1118 0.1488 0.2492 0.3959 36.09 0.2755 0.3482 0.4349 0.5305
1.5 10.82 0.5516 0.6001 0.6884 0.8092 5.06 0.7914 0.8495 0.8869 0.9242
2.0 1.91 0.9294 0.9438 0.9625 0.9834 1.10 0.9861 0.9941 0.9967 0.9989
2.5 1.01 0.9982 0.9991 0.9995 0.9998 1.00 1.0000 1.0000 1.0000 1.0000
3.0 1.00 1.0000 1.0000 1.0000 1.0000 1.00 1.0000 1.0000 1.0000 1.0000
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Table 3 studies an MMSE-controlled process with �¼ 0.2 and �¼ 0.6, which is
taken from MMSE-zone 3. The process is subject to a mean shift. Similar patterns
are found as in table 1. The optimality of the adaptive T2 procedures holds for all
small shifts. For large shifts, the adaptive charts perform closely to the T2 chart,
especially when a large smoothing parameter is used. The difference between the
AT2-E and the AT2-OE charts are not significant, especially for moderate and large
shifts, which further proves that the OEWMA forecasting method is rather robust to
failure types.

More extensive simulations on examples from other zones of the PI or MMSE
controller have been conducted, and similar conclusions are drawn. The superiority
of the adaptive T2 procedures is found in all cases.

6. Conclusions

It has been well recognized that SPC techniques are necessary for long-term process
stability monitoring and assignable-cause discovery in feedback-controlled processes,
in which dynamic shift patterns are frequently observed. However, applying
conventional control charts cannot gain satisfied performance in detecting dynamic
shifts, since the pattern information is not captured by these charts.

In this paper, the dynamic shifts caused by the PI and MMSE controllers have
been analysed. Based on features of the dynamic shifts, the adaptive T2 chart has
been investigated. The adaptive T2 chart features using forecasting algorithms to
estimate time-varying shift directions and monitor the statistic that is optimal in
detecting the existence of the predicted shift direction at each step. A model-free
EWMA algorithm is used for shift forecasting. By considering the strong oscillations
of some feedback-controlled processes, a modified EWMA procedure, termed
OEWMA, is proposed.

Simulation results show that the adaptive T2 chart is sensitive to both small and
large shifts. Its overall performance is satisfactory. This is explained by the capability
of the forecasting procedure in capturing the underlying shift trend. The adaptive T2

chart is also flexible in design. By adjusting the smoothing parameter, its
performance can be optimized for desired shift magnitudes.

A comparison of the AT2-E chart and the AT2-OE chart shows that the former
has a better performance for small shifts. However, the OEWMA procedure is more

Table 3. Performance comparison of control charts for a process from MMSE- Zone 3.
� ¼ 0:2, � ¼ 0:6.

AT2-E AT2-OE MEWMA

� �¼ 0.2 �¼ 0.5 �¼ 0.2 �¼ 0.5 T2 U0 U1 �¼ 0.2 �¼ 0.5

0.5 9.67 12.61 11.69 16.15 17.55 16.62 9.72 8.92 10.05
1.0 4.06 4.18 4.33 4.62 4.74 4.84 3.76 4.49 4.05
1.5 2.75 2.65 2.79 2.78 2.81 2.70 2.56 3.35 2.83
2.0 2.17 2.05 2.14 2.10 2.10 1.92 2.11 2.79 2.29
2.5 1.85 1.71 1.76 1.72 1.72 1.51 1.92 2.40 1.99
3.0 1.63 1.47 1.50 1.47 1.47 1.26 1.76 2.12 1.80

5616 K. Wang and F. Tsung



robust than the EWMA procedure to strong oscillations. In addition, the AT2-OE
chart has a higher probability in detecting shifts with short runs. Therefore, the
AT2-OE chart is recommended for general situations.
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Appendix

The variance-covariance matrix of an MMSE-controlled process

Substitute control action (4) and disturbance model (2) for corresponding terms in
process (1) yields:

et ¼
ð� � �Þ

1� �B
et�1 þ

1� �B

1� �B
"t:

Therefore,

et ¼ "t,

xt ¼ �xt�1 þ ð� � �Þ"t:

The variance of et is easily obtained as:

�2e ¼ �
2
" :

Since covðxt, "tÞ ¼ ð� � �Þ�
2
" , the variance of xt is obtained:

�2x ¼
ð� � �Þ2

1� �2
�2" :

The covariance between the output and the input is:

covðxt, "tÞ ¼ ð� � �Þ�
2
" :

References

Alwan, L.C. and Roberts, H.V., Time series modeling for statistical process control. J. Bus.
Econ. Stat, 1989, 6, 87–95.

Apley, D.W. and Shi, J., The GLRT for statistical process control of autocorrelated processes.
IIE Trans., 1999, 31, 1123–1134.

Monitoring feedback-controlled processes 5617



Apley, D.W. and Tsung, F., The autoregressive T-2 chart for monitoring univariate
autocorrelated processes. J. Qual. Technol., 2002, 34, 80–96.

Box, G. and Kramer, T., Statistical process monitoring and feedback adjustment –
a discussion. Technometrics, 1992, 34, 251–267.

Box, G.E.P., Jenkins, G.M. and Reinsel, G.C., Time series analysis: forecasting and control,
1994 (Prentice Hall: Englewood Cliffs, N.J.).

Capilla, C., Ferrer, A., Romero, R. and Hualda, A., Integration of statistical and engineering
process control in a continuous polymerization process. Technometrics, 1999, 41, 14–28.

DelCastillo, E. and Hurwitz, A.M., Run-to-run process control: literature review and
extensions. J. Qual. Technol., 1997, 29, 184–196.

Faltin, F.W. and Tucker, W.T., On-line quality control for the factory of the 1990s and
beyond. In Statistical Process Control in Manufacturing, edited by J.B. Keats and
D.C. Montgomery, 1991 (Marcel Dekker: New York).

Fan, S.K.S., Jiang, B.C., Jen, C.H. and Wang, C.C., SISO run-to-run feedback controller
using triple EWMA smoothing for semiconductor manufacturing processes.
Int. J. Prod. Res., 2002, 40, 3093–3120.

Gultekin, M., Elsayed, E.A., English, J.R. and Hauksdottir, A.S., Monitoring automatically
controlled processes using statistical control charts. Int. J. Prod. Res., 2002, 40,
2303–2320.

Hawkins, D.M., Multivariate quality control based on regression-adjusted variables.
Technometrics, 1991, 33, 61–75.

Hu, S.J. and Roan, C., Change patterns of time series-based control charts. J. Qual. Technol.,
1996, 28, 302–312.

Hwarng, H.B., Detecting process mean shift in the presence of autocorrelation: a neural-
network based monitoring scheme. Int. J. Prod. Res., 2004, 42, 573–595.

Jen, C.H., Jiang, B.C. and Fan, S.K.S., General run-to-run (R2R) control framework using
self-tuning control for multiple-input multiple-output (MIMO) processes. Int. J. Prod.
Res., 2004, 42, 4249–4270.

Jiang, W., A joint monitoring scheme for automatically controlled processes. IIE Trans., 2004,
36, 1201–1210.

Lowry, C.A. and Montgomery, D.C., A review of multivariate control charts. IIE Trans.,
1995, 27, 800–810.

Lu, C.W. and Reynolds, M.R., EWMA control charts for monitoring the mean
of autocorrelated processes. J. Qual. Technol., 1999, 31, 166–188.

Molnau, W.E., Montgomery, D.C. and Runger, G.C., Statistically constrained
economic 7design of the multivariate exponentially weighted moving average control
chart. Qual. Reliab. Eng. Int., 2001, 17, 39–49.

Montgomery, D.C., Keats, J.B., Yatskievitch, M. and Messina, W.S., Integrating statistical
process monitoring with feedforward control. Qual. Reliab. Eng. Int., 2000, 16, 515–525.

Nembhard, H.B. and Kao, M.S., Adaptive forecast-based monitoring for dynamic systems.
Technometrics, 2003, 45, 208–219.

Pandit, S.M. and Wu, S.M., Time Series and System Analysis With Applications, 1993
(Krieger Pub. Co.: Malabar, Florida).

Sachs, E., Hu, A. and Ingolfsson, A., Run by run process control - combining SPC and
feedback-control. IEEE Transactions on Semiconductor Manufacturing, 1995, 8, 26–43.

Tsung, F., Statistical monitoring and diagnosis of automatic controlled processes using
dynamic PCA. Int. J. Prod. Res., 2000, 38, 625–637.

Tsung, F. and Apley, D.W., The dynamic T-2 chart for monitoring feedback-controlled
processes. IIE Trans., 2002, 34, 1043–1053.

Tsung, F. and Shi, J.J., Integrated design of run-to-run PID controller and SPC monitoring
for process disturbance rejection. IIE Trans., 1999, 31, 517–527.

Tsung, F., Shi, J. and Wu, C.F.J., Joint monitoring of PID-controlled processes. J. Qual.
Technol., 1999, 31, 275–285.

Tsung, F. and Tsui, K.L., A mean-shift pattern study on integration of SPC and APC for
process monitoring. IIE Trans., 2003, 35, 231–242.

Tsung, F., Wu, H.Q. and Nair, V.N., On the efficiency and robustness of discrete
proportional-integral control schemes. Technometrics, 1998, 40, 214–222.

5618 K. Wang and F. Tsung



Tucker, W.T., Faltin, F.W. and VanderWiel, S.A., Algorithmic statistical process control – an
elaboration. Technometrics, 1993, 35, 363–375.

Wang, K., Adaptive Charting Techniques for Multivariate and Dynamic Systems, PhD
dissertation, 2006, Department of Industrial Engineering and Logistics Management,
Hong Kong University of Science and Technology, Hong Kong.

Wang, K. and Tsung, F., An adaptive T2 chart for monitoring dynamic systems. J. Qual.
Tech., 2007 (in press).

Zhang, N.F. and Pollard, J.F., Analysis of autocorrelations in dynamic processes.
Technometrics, 1994, 36, 354–368.

Monitoring feedback-controlled processes 5619






